206 research outputs found

    Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Suppressed pi^0 Production at Large Transverse Momentum in Central Au+Au Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    Transverse momentum spectra of neutral pions in the range 1 < p_T < 10 GeV/c have been measured at mid-rapidity by the PHENIX experiment at RHIC in Au+Au collisions at sqrt(s_NN) = 200 GeV. The pi^0 multiplicity in central reactions is significantly below the yields measured at the same sqrt(s_NN) in peripheral Au+Au and p+p reactions scaled by the number of nucleon-nucleon collisions. For the most central bin, the suppression factor is ~2.5 at p_T = 2 GeV/c and increases to ~4-5 at p_T ~= 4 GeV/c. At larger p_T, the suppression remains constant within errors. The deficit is already apparent in semi-peripheral reactions and increases smoothly with centrality.Comment: 326 authors, 6 pages text, RevTeX, 3 figures, 2 tables. Submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Mid-Rapidity Direct-Photon Production in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    A measurement of direct photons in p+p collisions at sqrt(s)=200 GeV is presented. A photon excess above background from pi^0 --> gamma+gamma, eta --> gamma+gamma, and other decays is observed in the transverse momentum range 5.5 < p_T < 7 GeV/c. The result is compared to a next-to-leading-order perturbative QCD calculation. Within errors, good agreement is found between the QCD calculation and the measured result.Comment: 330 authors, 7 pages text, RevTeX, 2 figures, 2 tables. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Scaling properties of proton and anti-proton production in sqrt(s_NN) = 200 GeV Au + Au collisions

    Get PDF
    We report on the yield of protons and anti-protons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt(s_NN) = 200 GeV measured at mid-rapidity by the PHENIX experiment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a significant fraction of all produced particles are protons and anti-protons. They show a centrality-scaling behavior different from that of pions. The p-bar/pion and p/pion ratios are enhanced compared to peripheral Au+Au, p+p, and electron+positron collisions. This enhancement is limited to p_T < 5 GeV/c as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5 < p_T < 9 GeV/c.Comment: 325 authors, 6 pages text, 4 figures, RevTeX 4. Minor changes to text and figures to meet PRL length restrictions; no changes to figures; resubmitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    J/Psi Production in Au-Au Collisions at sqrt(s_NN) = 200 GeV at the Relativistic Heavy Ion Collider

    Get PDF
    First results on charm quarkonia production in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The yield of J/Psi's measured in the PHENIX experiment via electron-positron decay pairs at mid-rapidity for Au-Au reactions at sqrt(s_NN) = 200 GeV are analyzed as a function of collision centrality. For this analysis we have studied 49.3 million minimum bias Au-Au reactions. We present the J/Psi invariant yield dN/dy for peripheral and mid-central reactions. For the most central collisions where we observe no signal above background, we quote 90% confidence level upper limits. We compare these results with our J/Psi measurement from proton-proton reactions at the same energy. We find that our measurements are not consistent with models that predict strong enhancement relative to binary collision scaling.Comment: 325 authors, 11 pages text, 6 figures, 4 tables, RevTeX 4. Accepted for publication as a regular article in Physical Review C. This version has minor changes to respond to referee suggestions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/papers.htm

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Measurement of Single Muons at Forward Rapidity in p+p Collisions at sqrt(s) = 200 GeV and Implications for Charm Production

    Get PDF
    Muon production at forward rapidity (1.5 < |\eta| < 1.8) has been measured by the PHENIX experiment over the transverse momentum range 1 < p_T \le 3 GeV/c in sqrt(s) = 200 GeV p+p collisions at the Relativistic Heavy Ion Collider. After statistically subtracting contributions from light hadron decays an excess remains which is attributed to the semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks. The resulting muon spectrum from heavy flavor decays is compared to PYTHIA and a next-to-leading order perturbative QCD calculation. PYTHIA is used to determine the charm quark spectrum that would produce the observed muon excess. The corresponding differential cross section for charm quark production at forward rapidity is determined to be d\sigma_(c c^bar)/dy|_(y=1.6)=0.243 +/- 0.013 (stat.) +/- 0.105 (data syst.) ^(+0.049)_(-0.087) (PYTHIA syst.) mb.Comment: 329 authors, pages text, 18 figures, tables. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    A Detailed Study of High-pT Neutral Pion Suppression and Azimuthal Anisotropy in Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

    Full text link
    Measurements of neutral pion production at midrapidity in sqrt(s_NN) = 200 GeV Au+Au collisions as a function of transverse momentum, p_T, collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi^0 results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass-energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of three increase in statistics over previously published results for p_T > 6 GeV/c. We evaluate the suppression in the yield of high-p_T pi^0's relative to point-like scaling expectations using the nuclear modification factor R_AA. We present the p_T dependence of R_AA for nine bins in collision centrality. We separately integrate R_AA over larger p_T bins to show more precisely the centrality dependence of the high-p_T suppression. We then evaluate the dependence of the high-p_T suppression on the emission angle \Delta\phi of the pions with respect to event reaction plane for 7 bins in collision centrality. We show that the yields of high-p_T pi^0's vary strongly with \Delta\phi, consistent with prior measurements. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane while the yield of pi^0's produced perpendicular to the reaction plane is suppressed by more than a factor of 2. We analyze the combined centrality and \Delta\phi dependence of the pi^0 suppression in different p_T bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.Comment: 330 authors, pages text, RevTeX4, figures, tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore